Differential regulation of aldosterone synthase and 11beta-hydroxylase transcription by steroidogenic factor-1.
نویسندگان
چکیده
11beta-Hydroxylase (hCYP11B1) and aldosterone synthase (hCYP11B2) are closely related isozymes with distinct roles in cortisol and aldosterone production respectively. Aldosterone synthase catalyzes the final step in aldosterone biosynthesis and is expressed only in the zona glomerulosa of the normal adrenal. 11beta-Hydroxylase catalyzes the final reaction in the production of cortisol and is expressed at higher levels in the zona fasciculata. The mechanisms causing differential expression of these genes are not well defined. Herein, we demonstrate contrasting roles for the orphan receptor steroidogenic factor-1 (SF-1) in the regulation of human (h) CYP11B1 and hCYP11B2. Human NCI-H295R (H295R) or mouse Y-1 cells were transiently transfected with luciferase reporter constructs containing 5'-flanking regions of hCYP11B1, hCYP11B2, human 17alpha-hydroxylase (hCYP17), human cholesterol side-chain cleavage (hCYP11A1) or mouse (m) cyp11b2 (mcyp11b2). Co-transfection of vectors encoding SF-1 increased expression of hCYP11B1, hCYP11A1 and hCYP17 constructs, but inhibited hCYP11B2 reporter activity. Murine, bovine and human SF-1 were unable to increase transcription of hCYP11B2 in H295R cells. Both hCYP11B2 and mcyp11b2 promoter constructs were inhibited similarly by human SF-1. In mouse Y-1 cells, reporter expression of hCYP11B2 and mcyp11b2 was very low compared with hCYP11B1 constructs, suggesting that this adrenal cell model may not be appropriate for studies of CYP11B2. Electrophoretic mobility shift assay demonstrated that SF-1 interacted with an element from both hCYP11B1 and hCYP11B2. However, mutation of this element, termed Ad4, did not prevent agonist stimulation of hCYP11B2 by angiotensin II or forskolin but blocked activity of hCYP11B1. In some, but not all, reports of genetic linkage analysis, a naturally occurring single nucleotide polymorphism within the Ad4 element of hCYP11B2 (-344C/T) has been associated with cardiovascular disease. Herein, we have demonstrated that this polymorphism influenced binding of SF-1 in electrophoretic mobility shift assays, with the C allele binding SF-1 more strongly than the T allele. However, when hCYP11B2 constructs containing these alleles were transfected into H295R cells, there was no difference in agonist-stimulated expression or the response of either reporter construct to co-expression with human SF-1. Taken together, these data suggest that SF-1 and the Ad4 element are not major regulators of adrenal hCYP11B2 gene expression. Thus far, hCYP11B2 is the first steroid hydroxylase gene which is not positively regulated by SF-1.
منابع مشابه
Myocardial production of aldosterone and corticosterone in the rat. Physiological regulation.
Increasing evidence suggests that mineralo- and glucocorticoids modulate cardiovascular homeostasis via the effects of circulating components generated within the adrenals but also through local synthesis. The aim of this study was to assess the existence of such a steroidogenic system in heart. Using the quantitative reverse transcriptase-polymerase chain reaction, the terminal enzymes of cort...
متن کاملExpression profiles for steroidogenic enzymes in adrenocortical disease.
CONTEXT Excess production of aldosterone or cortisol has profound effects on cardiovascular function and impacts other major organ systems. The mechanisms leading to the autonomous hypersecretion of aldosterone or cortisol in aldosterone-producing adenoma (APA) or cortisol-producing adenoma (CPA) are unknown. OBJECTIVE The objective of this study was to compare the expression profiles of seve...
متن کاملCardiac steroidogenesis in the normal and failing heart.
The present study explores the possibility of local de novo aldosterone production in normal and failing hearts (human and mouse) and the regulation of such putative cardiac steroidogenesis. Total RNA was isolated from human tissue from failing hearts taken at the time of cardiac transplantation, from normal hearts obtained at autopsy, and from normal and pressure-overloaded mouse hearts. Vascu...
متن کاملUnequal crossing-over between aldosterone synthase and 11beta-hydroxylase genes causes congenital adrenal hyperplasia.
Congenital adrenal hyperplasia is one of the most frequently inherited diseases. It is characterized by a severe decline in cortisol secretion, which results in a compensatory increase in ACTH and consequent adrenal growth (hyperplasia). Here we describe the first case of 11beta-hydroxylase deficiency that is caused by an unequal cross-over of the genes encoding aldosterone synthase (CYP11B2) a...
متن کاملHeterogeneity of aldosterone-producing adenomas revealed by a whole transcriptome analysis.
Aldosterone-producing adenomas (APAs) are a common cause of arterial hypertension, but the underlying molecular mechanisms are unknown, although a transcriptional modulation of aldosterone synthase (CYP11B2) has been suggested. Aldosterone synthesis involves 2 main rate-limiting steps: cholesterol transport into mitochondria and CYP11B2 gene transcription. Evidence supports a role of Ca(2+)/cal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of molecular endocrinology
دوره 28 2 شماره
صفحات -
تاریخ انتشار 2002